
CUDA Graphs
NVIDIA Corporation



2 

ALL CUDA WORK FORMS A GRAPH

A

B

C

Wait

E

Wait

D

Wait

X

Y

Wait

CUDA Work in Streams



3 

ALL CUDA WORK FORMS A GRAPH

Graph of Dependencies

End

A

B X

C D

E Y

Any CUDA stream can be 
mapped to a graph

A

B

C

Wait

E

Wait

D

Wait

X

Y

Wait

CUDA Work in Streams



4 

Sequence of operations, connected by dependencies.

Operations are one of:

Kernel Launch  CUDA kernel running on GPU

CPU Function Call  Callback function on CPU

Memcopy/Memset  GPU data management

Memory Alloc/Free  Inline memory allocation

Sub-Graph  Graphs are hierarchical

DEFINITION OF A CUDA GRAPH
A graph node is any asynchronous CUDA operation

F

A

B X

C D

E Y



5 

NEW EXECUTION MECHANISM
Graphs Can Be Generated Once Then Launched Repeatedly

for(int i=0; i<1000; i++) {
    launch_graph( G );
}

F

A

B X

C D

E Y



6 

FREE UP CPU RESOURCES
Release CPU Time For Lower Power, or Running Other Work

time

Launch 
A

Launch 
B

Launch 
C

Launch 
D

Launch 
E

A B C D E

CPU Idle

Build 
Graph

Launch 
Graph CPU Idle

A B C D E

Stream
Launch

Graph
Launch



7 

LAUNCH OVERHEAD REDUCTION
Graph launch submits all work at once, reducing CPU cost

Launch A Launch B Launch C Launch D Launch E

A B C D E

time

Build 
Graph Launch Graph

A B C D E

time saved

CPU 
Time

GPU 
Time

Launch
Latency

When kernel runtime is short, execution time is dominated by CPU launch cost



8 

THREE-STAGE EXECUTION MODEL

Define

A

B X

C D

E Y

End

Single Graph “Template”

Instantiate

Multiple “Executable Graphs”

A

B X

C D

E Y

End

A

B X

C D

E Y

End

A

B X

C D

E Y

End

Execute

Executable Graphs 
Running in CUDA Streams

s1 s2 s3

Created in host code,
or loaded from disk,

or built up from libraries

Snapshot of template
Sets up & initializes GPU 

execution structures
(create once, run many times)

Concurrency in graph
is not limited by stream

(see later)



9 

MODIFYING GRAPHS IN-PLACE

Stream Launch Graph Update Graph Re-Launch

A

B

C

A

B

C
repeat 10 times

? iterate 10 times ?

launch
graph

iterate 10 times

A

B

C

Update
Graph

launch
graph

Define
Graph
Once

A

B

C

Parameters: may change
Topology: may change

Parameters: may change
Topology: may not change

Parameters: may not change
Topology: may not change



10 

PROGRAMMING MODEL



11 

ASYNCHRONOUS OPERATIONS ONLY

Stream Capture

▪ Very convenient way of creating a graph from existing library calls (see later slide)

▪ Records operations without actually launching a kernel

▪ Library must call an API to tell if kernels are being captured instead of launched

Problem if library calls cudaStreamSynchronize() or any other synchronous operation.

Capture is not launching anything so synchronize cannot wait for anything.

Capture operation fails.

Typically Shows Up During Stream Capture



12 

CAPTURE CUDA STREAM WORK INTO A GRAPH
Construct a graph from normal CUDA stream syntax

// Start by initiating stream capture

cudaStreamBeginCapture(&stream1);

// Build stream work as usual

A<<< ..., stream1 >>>();

cudaEventRecord(e1, stream1);

B<<< ..., stream1 >>>();

cudaStreamWaitEvent(stream2, e1);

C<<< ..., stream2 >>>();

cudaEventRecord(e2, stream2);

cudaStreamWaitEvent(stream1, e2);

D<<< ..., stream1 >>>();

// Now convert the stream to a graph

cudaStreamEndCapture(stream1, &graph);

A

B

Wait

D

C

Wait

stream1 stream2 graph

D

B C

A



13 

CAPTURE CUDA STREAM WORK INTO A GRAPH
Construct a graph from normal CUDA stream syntax

// Start by initiating stream capture

cudaStreamBeginCapture(&stream1);

// Build stream work as usual

A<<< ..., stream1 >>>();

cudaEventRecord(e1, stream1);

B<<< ..., stream1 >>>();

cudaStreamWaitEvent(stream2, e1);

C<<< ..., stream2 >>>();

cudaEventRecord(e2, stream2);

cudaStreamWaitEvent(stream1, e2);

D<<< ..., stream1 >>>();

// Now convert the stream to a graph

cudaStreamEndCapture(stream1, &graph);

graph

D

B C

A
Capture follows

inter-stream 
dependencies

to create forks & 
joinscudaStreamWaitEvent(str

eam2, e1);

cudaStreamWaitEvent(str
eam1, e2);

A

B

Wait

D

C

Wait

stream1 stream2



14 

CAPTURE EXTERNAL WORK
Stream Capture

// Start by initiating stream capture

cudaStreamBeginCapture(&stream);

// Captures my kernel launches and inside library calls

X<<< ..., stream >>>();

libraryCall(stream);  // Launches A, B, C, D

Z<<< ..., stream >>>();

// Now convert the stream to a graph

cudaStreamEndCapture(stream, &graph);

X

Z

A

D

B C

X

Z

D

B C

A

Resultant
graph

Inserting
graph

Library call



15 

CREATE GRAPHS DIRECTLY
Map Graph-Based Workflows Directly Into CUDA

D

B C

A

// Define graph of work + dependencies

cudaGraphCreate(&graph);

cudaGraphAddNode(graph, kernel_a, {}, ...);

cudaGraphAddNode(graph, kernel_b, { kernel_a }, ...);

cudaGraphAddNode(graph, kernel_c, { kernel_a }, ...);

cudaGraphAddNode(graph, kernel_d, { kernel_b, kernel_c }, ...);

// Instantiate graph and apply optimizations

cudaGraphInstantiate(&instance, graph);

// Launch executable graph 100 times

for(int i=0; i<100; i++)

cudaGraphLaunch(instance, stream);

Graph from
framework

(Full list of API calls in the CUDA Docs)



16 

COMBINING GRAPH & STREAM WORK
Capturing Streams Into An Existing Graph

// Create root node of graph via explicit API

cudaGraphAddNode(main_graph, X, {}, ...);

// Capture the library call into a subgraph

cudaStreamBeginCapture(&stream);

libraryCall(stream);  // Launches A, B, C, D

cudaStreamEndCapture(stream, &library_graph);

// Insert the subgraph into main_graph as node “Y”

cudaGraphAddChildGraphNode(Y, main_graph, { X } ... libraryGrpah);

// Continue building main graph via explicit API

cudaGraphAddNode(main_graph, Z, { Y }, ...);

X

Z

Y

A

D

B C

X

Z

D

B C

A

Resultant
graph

Inserting
graph

Library call



17 

GRAPH EXECUTION SEMANTICS
Order Graph Work With Other Non-Graph CUDA Work

stream

launchWork(cudaGraphExec_t i1, cudaGraphExec_t i2,
           CPU_Func cpu, cudaStream_t stream) {

    A <<< 256, 256, 0, stream >>>(); // Kernel launch

    cudaGraphLaunch(i1, stream); // Graph launch

    cudaStreamAddCallback(stream, cpu); // CPU callback

    cudaGraphLaunch(i2, stream); // Graph launch

    cudaStreamSynchronize(stream);

}

A

CPU

If you can put it in a CUDA stream, you can run it together with a graph



18 

GRAPHS IGNORE STREAM SERIALIZATION RULES
Launch Stream Is Used Only For Ordering With Other Work

stream

A

CPU

E
n
d

A

B X

C D

E Y

Branches in graph still 
execute concurrently 
even though graph is 

launched into a stream



19 

WHAT CAN YOU NOT DO WITH IT?



20 

NO AUTOMATIC PLACEMENT
User Must Define Execution Location For Each Node

B C

A

GPU 0 GPU 1

B C

A

GPU 0 GPU 1

C B

A

If fork in graph can run on 2 GPUs,
how do we pick what runs where?

Both choices are equally valid

Best choice may depend on data locality – unknown at execution layer 



21 

EXECUTION DEPENDENCIES
                                   CUDA Dependencies are Execution Dependencies

D

B C

A
cudaGraphAddNode(graph, A, {}, ...);

cudaGraphAddNode(graph, B, { A }, ...);

cudaGraphAddNode(graph, C, { A }, ...);

cudaGraphAddNode(graph, D, { B, C }, ...);

Task Inputs Outputs
A none X

B X Y

C X Z

D Y, Z none

Data dependency graph definition Execution dependency graph definition

All data dependencies can trivially be mapped to execution dependencies, but
Not all execution dependencies can be mapped to data dependencies

X X

Y Z



22 

WHAT CAN YOU DO WITH IT?



23 

RAPID RE-ISSUE OF WORK 

Cost of graph instantiation

≈ 

Cost of normal launch

Graphs Can Be Generated Once And Executed Repeatedly

for(int i=0; i<5; i++) {
    launch_graph( G );
}

A

B X

C D

E Y

End

A

B X

C D

E Y

End

A

B X

C D

E Y

End

A

B X

C D

E Y

End

A

B X

C D

E Y

End



24 

HETEROGENEOUS NODE TYPES

Data management may be optimized transparently

▪ Prefetching

▪ Read duplication

▪ Subdivision to finer granularity

Optimize for bandwidth and latency of memory access

Optimize for bandwidth of interconnect (PCI, QPI, NVLink)

Graph Nodes Include GPU Work, CPU Work and Data Movement

GPU

CPU

Copy

Heterogeneous
Execution



25 

CROSS-DEVICE DEPENDENCIES

CUDA is closest to the O/S and the hardware

▪ Can optimize multi-device dependencies

▪ Can optimize heterogeneous dependencies

▪ Especially if executing Graphs

CUDA Can Sync Multiple GPUs

GPU 0 GPU 1

CB

A

D

Multi-Device
Execution



26 

EXECUTION DETAILS



27 

LAUNCH OVERHEAD REDUCTION
Reducing System Overheads Around Short-Running Kernels

Launch A Launch B Launch C Launch D Launch E

A B C D E

time

Build 
Graph Launch Graph

A B C D E

time saved

CPU 
Time

GPU 
Time

Launch
Latency

When kernel runtime is short, execution time is dominated by CPU launch cost



28 

TAKEAWAYS

• Cuda Graphs

• Efficient way to express dependency 

• Performance Optimization

• Launch latency

 

F

A

B X

C D

E Y



29 

FURTHER STUDY
• Effortless CUDA Graphs GTC Spring 2021 talk

• https://www.nvidia.com/en-us/on-demand/session/gtcspring21-s32082/ 

• Cuda Memory Nodes

• https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#graph-memory-nodes 

• Cuda Graphs API Documentation:

• https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__GRAPH.html

 

https://www.nvidia.com/en-us/on-demand/session/gtcspring21-s32082/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#graph-memory-nodes
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__GRAPH.html


30 

HOMEWORK

• Log into Summit (ssh username@home.ccs.ornl.gov -> ssh summit)

• Clone GitHub repository:

• Git clone git@github.com:olcf/cuda-training-series.git

• Follow the instructions in the readme.md file:

• https://github.com/olcf/cuda-training-series/blob/master/exercises/hw13/README.md 

• Prerequisites: basic linux skills, e.g. ls, cd, etc., knowledge of a text editor like vi/emacs, and some 
knowledge of C/C++ programming

mailto:username@home.ccs.ornl.gov
https://github.com/olcf/cuda-training-series/blob/master/exercises/hw13/README.md


QUESTIONS?




